Printed 1	- ·	•		
	Roll. No:	╗		
Non		╝		
NOID	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow)			
	B.Tech			
	SEM: VI - THEORY EXAMINATION (20 20)			
	Subject: Machine Learning			
	3 Hours Max. Marks: 10	0		
	Instructions:			
	rify that you have received the question paper with the correct course, code, branch etc. uestion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice			
	s (MCQ 's) & Subjective type questions.			
	num marks for each question are indicated on right -hand side of each question.			
3. Illustro	ate your answers with neat sketches wherever necessary.			
	e suitable data if necessary.			
	ably, write the answers in sequential order.			
	et should be left blank. Any written material after a blank sheet will not be l/checked.			
evaiuaied	испескей.			
SECTIO	N-A	0.		
	pt all parts:-			
		1		
1-a.	The main challenge in machine learning that is addressed by the concept of "bias-variance trade-off"? (CO1, K2)	1		
(8	Achieving perfect accuracy on the training data.			
(t	o) Avoiding overfitting.			
(0	e) Maximizing model complexity.			
(0	Minimizing generalization error.			
1-b.	"One-hot encoding" used for in data preprocessing for machine learning? (CO1,	1		
	K2)			
(8) Reducing the dimensionality of data			
(ł	Encoding categorical variables into a binary format			
(0	e) Handling missing values			
(0	Scaling numerical data			
1-c.	In linear regression, what is the primary goal? (CO2, K1)	1		
(2	n) Minimize the sum of squared errors			
(t	Maximize the number of features			
(0	e) Maximize the complexity of the model			
(0				
1-d.	A single-layer neural network is often referred to as a: (CO2, K1)	1		

	(b)	Multilayer Perceptron	
	(c)	Deep neural network	
	(d)	Support vector machine	
1-e.		A-Nearest Neighbor (K-NN) is primarily used for which type of machine learning ask? (CO3, K1)	1
	(a)	Clustering	
	(b)	Regression	
	(c)	Classification	
	(d)	Dimensionality reduction	
1-f.		he primary difference between hierarchical and partitional clustering methods? CO3, K2)	1
	(a) clus	Hierarchical clustering requires a predefined number of clusters, while partitional tering does not.	
	(b) direc	Hierarchical clustering forms a tree-like structure, while partitional clustering ctly partitions the data.	
	(c)	Hierarchical clustering is more suitable for mixed data types.	
	(d)	Partitional clustering is non-hierarchical.	
1-g.	C	5.0 boosting is a technique used in: (CO4, K1)	1
	(a)	Decision tree modeling	
	(b)	Decision tree modeling Linear regression Neural networks Clustering	
	(c)	Neural networks	
	(d)	Clustering	
1-h.		Which ensemble method is known for its use of decision stumps (shallow trees) as ase learners? (CO4, K1)	1
	(a)	Bagging	
	(b)	AdaBoost	
	(c)	Random Forest	
	(d)	Gradient Boosting	
1-i.	T	he primary application of Q Learning in Reinforcement Learning is? (CO5, K1)	1
	(a)	Image recognition	
	(b)	Game-playing agents that learn optimal strategies	
	(c)	Natural language processing	
	(d)	Stock market prediction	
1-j.		Which component in a Reinforcement Learning system is responsible for valuating the quality of different actions in a given state? (CO5, K1)	1
	(a)	Agent	
	(b)	Environment	
	(c)	Value function	
	(d)	State transition function	

2. Attem	pt all parts:-	
2.a.	Define cross-validation in the context of machine learning. (CO1, K1)	2
2.b.	Discuss the assumptions of linear regression models and their importance in model interpretation. (CO2, K2)	2
2.c.	Describe the key principles of density-based clustering algorithms. (CO3, K2)	2
2.d.	Explain the concept of boosting and its role in improving model performance. (CO4, K2)	2
2.e.	Differentiate between model-free and model-based Reinforcement Learning. (CO5, K2)	2
SECTIO	<u>DN-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Discuss data science and machine learning, highlighting their similarities and differences in goals and methodologies. (CO1, K2)	6
3-b.	Point out the challenges related to bias in machine learning, including algorithmic and data bias, and strategies for mitigation, with real-world examples. (CO1, K4)	6
3-c.	Differentiate between underfitting and overfitting. Give examples. (CO2, K2)	6
3-d.	Demonstrate the stepwise process involved in construction of a decision tree with a suitable data set. (Note: create a dummy data set with at least two classes) (CO2, I	6 K3)
3.f.	Illustrate the step-by-step process of constructing a Bayesian belief network (BBN) for a real-world problem. (CO4, K3)	6
3.e.	Explain probability based Gaussian Mixture Model with example. (CO3, K4)	6
3.g.	Compare and contrast model-free and model-based Reinforcement Learning approaches. (CO5, K4)	6
SECTIO	<u>DN-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Explain "bias", "variance" and "bias-variance tradeoff" in machine learning. Discuss their effects on model performance and methods for balance. (CO1, K4)	10
4-b.	Analyze the importance of model interpretability in machine learning and its impact on trust. (CO1, K4)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Compare and contrast the ID3 and C4.5 decision tree algorithms, emphasizing their decision-making criteria and applications. (CO2, K4)	10
5-b.	Explain the role of confusion matrices in classification problems. Differentiate precision, recall and F1 Measure. (CO2, K4)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Compare AGNES and DIANA hierarchical clustering. (CO3, K4)	10
6-b.	Differentiate between K-means and K-mode clustering in details. (CO3, K4)	10
7. Answe	er any <u>one</u> of the following:-	
7-a.	Compare traditional decision trees and C5.0 boosting in terms of accuracy.	10

	interpretability, and computational demands. (CO4, K4)	
7-b.	Point out the role of weak learners in Gradient Boosting Machines (GBM) and their contribution to creating strong learners. (CO4, K4)	10
8. Answ	er any one of the following:-	
8-a.	Explain the Q Learning function in simple terms and how it helps the learning process. (CO5, K2)	10
8-b.	Discuss the various used components in reinforcement learning with the help of diagram. (CO5, K2)	10

